Architecture Overview
FlavumHive is built with a modular, extensible architecture that enables seamless integration of multiple platforms and AI personalities. This document explains the core architectural components and their interactions.
System Architecture
graph TD
A[Personality Manager] --> B[Platform Handlers]
B --> C[Twitter Handler]
B --> D[Reddit Handler]
E[Configuration System] --> A
E --> B
F[Database] --> B
G[Monitoring System] --> B
H[OpenAI Integration] --> A
I[Rate Limiter] --> B
Core Components
1. Personality Manager
- Purpose: Central management of AI personalities and their behaviors
- Responsibilities:
- Loading personality configurations
- Managing personality states
- Coordinating with OpenAI for content generation
- Ensuring consistency across platforms
2. Platform Handlers
-
Base Handler:
- Abstract interface for platform integration
- Common utilities and shared functionality
- Rate limiting and error handling
-
Platform-Specific Handlers:
- Twitter: Selenium-based automation
- Reddit: PRAW API integration
- Future platforms: Extensible architecture
3. Configuration System
- Hierarchical Configuration:
- Environment variables (
.env
) - Global settings (
config.json
) - Platform-specific configs
- Personality configurations
- Environment variables (
4. Database Layer
- SQLite Integration:
- Action history tracking
- State persistence
- Rate limit monitoring
- Analytics data storage
5. Monitoring System
- Components:
- Logging system
- Health checks
- Performance metrics
- Alert management
Data Flow
1. Content Generation Flow
sequenceDiagram
participant PM as Personality Manager
participant OAI as OpenAI
participant PH as Platform Handler
participant DB as Database
PM->>OAI: Request content generation
OAI-->>PM: Generated content
PM->>PH: Format for platform
PH->>DB: Log action
PH->>Platform: Post content
2. Interaction Flow
sequenceDiagram
participant Platform
participant PH as Platform Handler
participant PM as Personality Manager
participant DB as Database
Platform->>PH: New interaction
PH->>PM: Request response
PM->>OAI: Generate response
OAI-->>PM: Response content
PM->>PH: Format response
PH->>Platform: Post response
PH->>DB: Log interaction
Component Details
Personality Manager
class PersonalityManager:
def __init__(self):
self.personalities = {}
self.active_personality = None
self.openai_client = None
def load_personality(self, name: str):
# Load personality configuration
# Initialize OpenAI client
# Set active personality
Platform Handler Base
class BasePlatformHandler:
def __init__(self):
self.rate_limiter = RateLimiter()
self.config = None
self.db = None
@abstractmethod
def post_content(self):
pass
@abstractmethod
def handle_interaction(self):
pass
Error Handling
1. Platform-Level Errors
- Rate limit exceeded
- Authentication failures
- Network issues
- Platform-specific errors
2. System-Level Errors
- Configuration errors
- Database issues
- Resource constraints
- Integration failures
Error Recovery Flow
graph TD
A[Error Detected] --> B{Error Type}
B -->|Rate Limit| C[Backoff & Retry]
B -->|Auth Error| D[Reauth Flow]
B -->|System Error| E[Alert & Log]
C --> F[Resume Operations]
D --> F
E --> G[Manual Intervention]
Extensibility
Adding New Platforms
- Create new handler class
- Implement required interfaces
- Add platform-specific configuration
- Update personality configurations
Custom Personality Traits
- Define trait schema
- Create personality configuration
- Implement behavior modifiers
- Add platform-specific adaptations
Performance Considerations
1. Rate Limiting
- Platform-specific limits
- Global rate limiting
- Adaptive throttling
- Backoff strategies
2. Resource Management
- Connection pooling
- Cache management
- Database optimization
- Memory usage control
3. Scalability
- Modular design
- Independent components
- Stateless operations
- Horizontal scaling support
Security Architecture
1. Authentication
- Secure credential storage
- Token management
- Session handling
- 2FA support
2. Data Protection
- Encrypted storage
- Secure configurations
- Access control
- Audit logging