Skip to main content

Architecture Overview

FlavumHive is built with a modular, extensible architecture that enables seamless integration of multiple platforms and AI personalities. This document explains the core architectural components and their interactions.

System Architecture

graph TD
A[Personality Manager] --> B[Platform Handlers]
B --> C[Twitter Handler]
B --> D[Reddit Handler]
E[Configuration System] --> A
E --> B
F[Database] --> B
G[Monitoring System] --> B
H[OpenAI Integration] --> A
I[Rate Limiter] --> B

Core Components

1. Personality Manager

  • Purpose: Central management of AI personalities and their behaviors
  • Responsibilities:
    • Loading personality configurations
    • Managing personality states
    • Coordinating with OpenAI for content generation
    • Ensuring consistency across platforms

2. Platform Handlers

  • Base Handler:

    • Abstract interface for platform integration
    • Common utilities and shared functionality
    • Rate limiting and error handling
  • Platform-Specific Handlers:

    • Twitter: Selenium-based automation
    • Reddit: PRAW API integration
    • Future platforms: Extensible architecture

3. Configuration System

  • Hierarchical Configuration:
    • Environment variables (.env)
    • Global settings (config.json)
    • Platform-specific configs
    • Personality configurations

4. Database Layer

  • SQLite Integration:
    • Action history tracking
    • State persistence
    • Rate limit monitoring
    • Analytics data storage

5. Monitoring System

  • Components:
    • Logging system
    • Health checks
    • Performance metrics
    • Alert management

Data Flow

1. Content Generation Flow

sequenceDiagram
participant PM as Personality Manager
participant OAI as OpenAI
participant PH as Platform Handler
participant DB as Database

PM->>OAI: Request content generation
OAI-->>PM: Generated content
PM->>PH: Format for platform
PH->>DB: Log action
PH->>Platform: Post content

2. Interaction Flow

sequenceDiagram
participant Platform
participant PH as Platform Handler
participant PM as Personality Manager
participant DB as Database

Platform->>PH: New interaction
PH->>PM: Request response
PM->>OAI: Generate response
OAI-->>PM: Response content
PM->>PH: Format response
PH->>Platform: Post response
PH->>DB: Log interaction

Component Details

Personality Manager

class PersonalityManager:
def __init__(self):
self.personalities = {}
self.active_personality = None
self.openai_client = None

def load_personality(self, name: str):
# Load personality configuration
# Initialize OpenAI client
# Set active personality

Platform Handler Base

class BasePlatformHandler:
def __init__(self):
self.rate_limiter = RateLimiter()
self.config = None
self.db = None

@abstractmethod
def post_content(self):
pass

@abstractmethod
def handle_interaction(self):
pass

Error Handling

1. Platform-Level Errors

  • Rate limit exceeded
  • Authentication failures
  • Network issues
  • Platform-specific errors

2. System-Level Errors

  • Configuration errors
  • Database issues
  • Resource constraints
  • Integration failures

Error Recovery Flow

graph TD
A[Error Detected] --> B{Error Type}
B -->|Rate Limit| C[Backoff & Retry]
B -->|Auth Error| D[Reauth Flow]
B -->|System Error| E[Alert & Log]
C --> F[Resume Operations]
D --> F
E --> G[Manual Intervention]

Extensibility

Adding New Platforms

  1. Create new handler class
  2. Implement required interfaces
  3. Add platform-specific configuration
  4. Update personality configurations

Custom Personality Traits

  1. Define trait schema
  2. Create personality configuration
  3. Implement behavior modifiers
  4. Add platform-specific adaptations

Performance Considerations

1. Rate Limiting

  • Platform-specific limits
  • Global rate limiting
  • Adaptive throttling
  • Backoff strategies

2. Resource Management

  • Connection pooling
  • Cache management
  • Database optimization
  • Memory usage control

3. Scalability

  • Modular design
  • Independent components
  • Stateless operations
  • Horizontal scaling support

Security Architecture

1. Authentication

  • Secure credential storage
  • Token management
  • Session handling
  • 2FA support

2. Data Protection

  • Encrypted storage
  • Secure configurations
  • Access control
  • Audit logging

Next Steps