Monitoring Guide
This guide covers monitoring and observability for FlavumHive deployments.
Monitoring Components
1. System Metrics
- CPU usage
- Memory usage
- Disk space
- Network traffic
2. Application Metrics
- Request rates
- Response times
- Error rates
- Queue lengths
3. Platform Metrics
- Action success rates
- Rate limit status
- API response times
- Authentication status
Monitoring Tools
Logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('bot.log'),
logging.StreamHandler()
]
)
Metrics Collection
# Record metrics
await metrics.record_metric(
platform="twitter",
metric_type="tweet_success_rate",
value=0.95
)
# Get metrics
metrics = await metrics.get_metrics(
platform="twitter",
start_time=datetime.now() - timedelta(days=1),
end_time=datetime.now()
)
Alerting
Alert Configuration
class AlertConfig:
ERROR_THRESHOLD = 0.1
RESPONSE_TIME_THRESHOLD = 2.0
RATE_LIMIT_THRESHOLD = 0.8
Alert Channels
- Email notifications
- Slack alerts
- SMS alerts
- Dashboard notifications
Dashboard
Metrics Dashboard
- Real-time metrics
- Historical trends
- Platform status
- Alert history
System Status
- Component health
- Resource usage
- Error rates
- Performance metrics
Best Practices
1. Logging
- Use appropriate levels
- Include context
- Structured logging
- Regular rotation
2. Metrics
- Key indicators
- Regular collection
- Data retention
- Trend analysis
3. Alerting
- Clear thresholds
- Actionable alerts
- Proper routing
- Alert fatigue prevention