Skip to main content

Monitoring Guide

This guide covers monitoring and observability for FlavumHive deployments.

Monitoring Components

1. System Metrics

  • CPU usage
  • Memory usage
  • Disk space
  • Network traffic

2. Application Metrics

  • Request rates
  • Response times
  • Error rates
  • Queue lengths

3. Platform Metrics

  • Action success rates
  • Rate limit status
  • API response times
  • Authentication status

Monitoring Tools

Logging

# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('bot.log'),
logging.StreamHandler()
]
)

Metrics Collection

# Record metrics
await metrics.record_metric(
platform="twitter",
metric_type="tweet_success_rate",
value=0.95
)

# Get metrics
metrics = await metrics.get_metrics(
platform="twitter",
start_time=datetime.now() - timedelta(days=1),
end_time=datetime.now()
)

Alerting

Alert Configuration

class AlertConfig:
ERROR_THRESHOLD = 0.1
RESPONSE_TIME_THRESHOLD = 2.0
RATE_LIMIT_THRESHOLD = 0.8

Alert Channels

  1. Email notifications
  2. Slack alerts
  3. SMS alerts
  4. Dashboard notifications

Dashboard

Metrics Dashboard

  • Real-time metrics
  • Historical trends
  • Platform status
  • Alert history

System Status

  • Component health
  • Resource usage
  • Error rates
  • Performance metrics

Best Practices

1. Logging

  • Use appropriate levels
  • Include context
  • Structured logging
  • Regular rotation

2. Metrics

  • Key indicators
  • Regular collection
  • Data retention
  • Trend analysis

3. Alerting

  • Clear thresholds
  • Actionable alerts
  • Proper routing
  • Alert fatigue prevention

Next Steps